
 Jim Turley

Embedded Systems Conference 2004
Class # 202: Choosing a 32-Bit Microprocessor

Jim Turley
jim@jimturley.com

www.JimTurley.com

Everything You Know Is Wrong
Selecting a microprocessor is no easy matter. Looking just at 32-bit

microprocessors for embedded applications, more than 115 different chips
are currently available. How many can you name?

Compared to the 4–5 different PC processor chips available at any
given time, selecting an embedded microprocessor is a daunting task.
Moreover, the choice of processor affects everyone connected with the
project – programmers, hardware engineers, technical support, and
sometimes even marketing and sales. Microprocessors also dictate growth
paths, upgrades, performance headroom, development tools, operating
systems, programming languages, semiconductor vendors, ASIC
availability, licensing fees, royalties, power consumption, RF interference,
heat, PC board design, and still more factors. Clearly, this is not a decision
to be made lightly.

Yet lightly exactly how many developers approach the task. “We’ll
just use what we used at my last job,” some engineers might say. “Never
underestimate the influence of in-flight magazines on your company’s
strategy,” is how another engineer put it. Poorly informed executives or
managers sometimes dictate the choice of this or that CPU based on some
overheard tidbit of market gossip or a vendor’s glossy article proclaiming its
advanced technology. The truth is often hard to glean from the raw data and
microprocessors are only partly made of silicon. The rest is software,
support, and reputation.

There is seldom one right microprocessor for any given task. With so
many choices, it’s normal to find a handful of chips that are equally well
suited. Then it comes down to intangible elements: does the chip have the
right future roadmap? Is it supported by your favorite compiler or operating
system? Does the chip maker have a good reputation in the market? Do any
of your fellow engineers have previous experience with this particular
device? If so, was it a happy experience?

www.jimturley.com Technical insight. Business relevance. (831) 375-8086

mailto:jim@jimturley.com
http://www.jimturley.com/

 Jim Turley

The Nine Evaluation Criteria:

They are:

• Price
• Power consumption (including heat dissipation)
• Performance (measured along many axes)
• Software support (including hardware development tools)
• Code density
• Software compatibility
• Future roadmap and growth path
• Availability (including core IP and/or package type)
• Intangibles, including familiarity and reputation

Price
To no one’s great surprise, price usually ranks first among all the

criteria that designers use to evaluate a processor. Embedded designs are
usually price-constrained and it’s no use check out chips that cost ten times
more than you can spend.

The good news is, there are a lot of 32-bit processors priced from as
little as $5 to as much as $150 or more. More surprising, the expensive chips
aren’t always the fastest ones, depending on your definition of fast (see
Performance, below.)

Obviously, you’ll want to negotiate pricing with your processor
vendor. Keep in mind that prices decline with volume, and that most
customers overestimate their volume. We all want our next widget to be a
million-seller, but very few actually are. Also keep in mind that although
your product might be a big success in your market, it’s not necessarily a big
deal to the rest of the world. Your idea of “big volume” might be far
different from Motorola’s. Don’t overestimate your own importance.

www.jimturley.com Technical insight. Business relevance. (831) 375-8086

 Jim Turley

For example, a maker of industrial robots would be thrilled to ship
five robots per month. That’s big volume to them, but it’s a rounding error to
most CPU makers. Unless you work for Dell, Nokia, or General Motors
don’t think you can coerce CPU makers into special pricing or delivery
arrangements just for you.

Prices are negotiable, and although silicon chips do cost something to
make, the cost of a chip has little to do with the price of a chip. Prices are set
by marketing departments, not by simply adding a fair profit to the
manufacturing cost. Prices have more to do with market pressures and
competition than with silicon, plastic, and labor.

Power Consumption
For some designers, power is a big deal. For others, it’s a don’t-care.

Power equates to battery life, heat dissipation, and (to a minor extent)
reliability but unless you’re optimizing for one of these criteria, power can
be a non-issue.

Claims of power consumption by the CPU makers are just as squishy
and unreliable as are claims of performance. You would think that power
consumption would be an objective, easily measured characteristic – but it’s
not. Be very suspicious of power claims and measure any important metrics
on your own.

Power consumption varies as the square of the chip’s voltage, so
changing the supply voltage (which many chips allow) can make a very big
difference. Power varies linearly with speed, so changing the chip’s
frequency (which many also allow) makes a noticeable difference as well.
Workload also affects power, so the software the chip is running makes a
difference – something that’s either overlooked or turned to the
manufacturer’s advantage in most databook summaries.

Finally, don’t overlook the chip’s bus structure and the way it
connects to memory chips (RAM, EPROM, etc.). These can make more
difference than you might think. Today’s low-power microprocessors are
extremely efficient with their own power but they can’t change the way
DRAMs work. Every time the processor accesses external memory it burns
energy by toggling 32 data-bus lines, a few dozen address-bus lines, several
control lines, and who-knows-how-many DRAM chips. It’s not unusual for

www.jimturley.com Technical insight. Business relevance. (831) 375-8086

 Jim Turley

the DRAMs to use more power than the processor, so optimizing the
processor’s power may be a complete waste of time.

Performance
You would think that performance would be the #1 criterion for

choosing any processor, yet surveys repeatedly show that that’s rarely the
case. Performance usually ranks around third or fourth in priority among
designers’ important considerations. (Price, support, and availability rank
higher.)

It’s good that performance is not weighted more heavily, because it’s
a slippery characteristic to measure. The very concept of performance means
different things to different users. There’s no such thing as a single “drag
race” that can identify the fastest chip; there’s no single figure of merit.
Almost any 32-bit processor can claim to be the best along some axis of
performance, and justify it.

Unless you’re going to personally benchmark different processors
running your code in your expected environment, third-party benchmarks
and datasheet specs will be of little use to you. Again, so-called standard
benchmarks just aren’t very useful. They’re simplified to the point of
uselessness, and those that aren’t simplified generally wind up measuring
aspects that aren’t important to you. It’s a dismal situation.

Processors that are good at some tasks, such as MPEG decompression,
may be terrible at other tasks, such as handling complex decision trees.
Chips have a surprising amount of variability even doing simple 32-bit
multiplication: the differences can be as much as 20-to-1 among supposedly
similar processors.

The much-misused MIPS (millions of instructions per second) rating
is particularly dangerous. Apart from having three different and unrelated
meanings, MIPS numbers are frequently padded by overeager marketing
department in order to gain a perceived edge in performance. Be especially
suspicious of any performance claims expressed in MIPS.

www.jimturley.com Technical insight. Business relevance. (831) 375-8086

 Jim Turley

Software Support
Software support is often the #1 concern when choosing a new

processor. It’s not unusual for design teams to pick their compiler, debugger,
and operating system first – and then choose a processor that supports those
tools. There’s nothing wrong with this software-centric point of view. In
fact, more companies should do it.

This method places the concerns of the software developers above
those of the hardware developers, but that’s a management-level decision.
There’s little concrete guidance to be given here, since the decision is very
personal and dependant on the organization. If tools and development
systems are important, start there. If not, let your hardware team go wild
picking the chip they prefer.

Code Density
“Code density” is simply the ratio between the size of your source

code and the size of your object code. The smaller the object code, the better
your code density. Good code density is a good thing because it means you
need less memory (RAM, EPROM, or whatever) to execute your code.

The description above sounds as if the compiler controls code density
– it doesn’t. Code density is determined by your processor, not your
compiler. Sure, some compilers produce tighter object code than others, but
all compilers are limited by the underlying assembly-language instruction set
of the processor they’re targeting. Compilers can’t produce what the chip
doesn’t support.

If code density (i.e., memory footprint) is important to you, then you
need to pay special attention to your choice of microprocessor. Processors
can make a 2:1 different in code density. That is, the exact same source code
compiled for two different chips can produce executable binaries that are
double (or half) the size of the other chip’s code. No amount of compiler
tweaking will get around differences that big. It’s an inherent feature of each
and every microprocessor.

As a rule of thumb, RISC processors have poor code density, while
CISC processors have comparatively good code density. For example,
MIPS, ARM, and PowerPC chips will have poorer code density than a
68030, ’386, or ColdFire processor.

www.jimturley.com Technical insight. Business relevance. (831) 375-8086

 Jim Turley

Software Compatibility
This one’s easy because it’s binary. Your new chip is either

compatible with your old/previous chip or it’s not. At least, that’s how it’s
supposed to work. You’d be surprised how gray this black-and-white
decision can become.

Good examples of compatible chips are the x86 processors from Intel,
AMD, and a few other companies. Nobody questions whether a 386 can run
older 286 code – you know it can. Compatibility up and down the x86
product line is assumed. It’s a given. That’s why we keep buying x86-based
PCs. We know our old software will run. These chips are binary compatible.

A less-compatible example is Motorola’s ColdFire family. These
chips are sort of, but not completely, compatible with the venerable 68K
family (68000, 68020, etc.). For the most part, older 68K software will not
run on a new ColdFire chip without recompiling. Programmers with 68K
experience will feel instantly at home with ColdFire, and that familiarity
may or may not be useful to you. If you’ve got to recompile your source
code anyway, why not consider compiling it for a completely different
processor? ColdFire and 68K chips are source code compatible.

Still another level of compatibility is that offered by some of TI’s
digital signal processing (DSP) chips. They are neither source- nor binary-
compatible, but merely “architecturally compatible.” This simply means that
the chips have similar features and register sets but different instruction sets
and resources. In other words, programmers familiar with some TI DSPs
will quickly learn to program other TI DSPs, but no software (or at least,
little software) will carry straight across. These chips are incompatible.

The quick-and-dirty rule of thumb about compatibility is that it’s only
important if your product runs third-party software. In other words, if you’re
writing all the code your product will ever need, compatibility’s not
important. On the other hand, if your product can run store-bought software
then compatibility is far more important – in fact, it might be the most
important characteristic of all (as with PCs). This is obviously a simplified
view, and there are many variations in between these two extremes, but it’s a
start.

www.jimturley.com Technical insight. Business relevance. (831) 375-8086

 Jim Turley

Future Roadmap and Growth Path
Some microprocessors are unique one-offs. Others are part of a long

and distinguished family. Which category “Chip X” falls into might
determine whether or not it’s right for you.

At first, you might think that nobody would want to be stranded using
a one-of-a-kind processor with no future growth path – a dead-end chip, if
you will. Actually, that’s not always a bad thing. (Usually, but not always.)
Deeply embedded systems with no third-party software are “invisible” to the
users, who couldn’t care less whose chip is in their pager, antilock brake
system, or network router. If you’re designing these systems, the best chip
for the job might not have an upgrade path. And that might be just fine,
assuming you don’t mind recompiling your code for the next-generation
product. Even a dead-end chip might be just right for today’s design.

By and large, programmers prefer a chip that’s got some future ahead
of it. Hardware upgrade paths and software compatibility (above) are
related. If you’ve got a big investment in your software – and who hasn’t? –
then you’ll want to protect it by coding for a chip that will have faster and
better offspring next year. Generally, chip vendors are only too happy to talk
about next year’s model, or show off the PowerPoint graphic that show their
CPU family shooting off up and to the right.

Availability
Obviously, you’ll want your new chip to be available when you need

it. And you’ll want to be sure of an uninterrupted supply once you start
production. That’s often a matter for purchasing departments, but it affects
the engineers’ decisions as well.

Microprocessors are almost never second-sourced these days. That
means no matter which chip you pick or which architecture or family it
belongs to, it will only be available from exactly one company. Gone are the
days of hedging your best with second-sourced devices. If that’s not
acceptable, then you need to restrict your shopping to 8-bit and 16-bit
processors.

“Availability” can mean different things, however. Sometimes you
don’t want to buy chips at all, you want to license IP. Licensing an IP
(intellectual property) core allows you to create your own chips that include

www.jimturley.com Technical insight. Business relevance. (831) 375-8086

 Jim Turley

someone else’s processor design. This is a very popular – and immensely
expensive – alternative to buying commercial off-the-shelf processors. Not
all 32-bit processors are available for license, however. In fact, most are not.
The decision to buy chips or license IP has more to do with your company’s
business model than with the choice of CPU, so we’ll leave the rest of this
discussion for another time.

Intangibles
This is what it all comes down to: the intangibles. It’s the reason we

buy the red sports car instead of the sensible brown family sedan; the
designer shoes instead of the comfortable sneakers; the boat instead of, well,
anything.

In the end, you’ve got to be happy with your processor. You’re going
to live with it for many years, and if your product will span many
generations you’ll be living with this chip’s descendants as well. Gut
feelings shouldn’t be ignored when you make a decision this momentous.

Reputation counts for something. Does this CPU company have a
good track record? Have they been in business – in the embedded business –
a long time, or are they a newcomer? Have I used chips from this family
before, or have my colleagues used them before? What do the newsgroups
say?

Some chips have a “cool” aura surrounding them, while others are less
exciting. It’s hard to say why this is. In the 1990s RISC chips were far cooler
than CISC chips, even though the CISC processors often had (and still have)
real advantages. The same goes for anything made by Intel: some engineers
avoid Intel processors while others prefer them. Go figure.

A lot of what leads designers, engineers, or programmers to a
particular chip is misinformation and, frankly, propaganda. Without
checking the facts, making their own measurements, or even simply asking
for an objective opinion, normally intelligent designers can be swayed by
hype and advertising. Engineers are people, too, and people sometimes make
funny and irrational decisions. That’s okay if you know you’re doing it, if
you go in with your eyes open. But most engineers and engineering
managers would prefer to make objective, informed, and dispassionate

www.jimturley.com Technical insight. Business relevance. (831) 375-8086

 Jim Turley

www.jimturley.com Technical insight. Business relevance. (831) 375-8086

decisions based on reality. It is for those people that this primer has been
created.

30 #

Jim Turley is an independent analyst, columnist, and speaker specializing in microprocessors and
semiconductor intellectual property. He is editor of Silicon-Insider, a columnist for Embedded Systems
Programming (ESP), was past editor of both Microprocessor Report and Embedded Processor Watch, and
host of the annual Microprocessor Forum and Embedded Processor Forum conferences. For a good time
call (831) 375-8086, write jim@jimturley.com or visit www.jimturley.com.

mailto:jim@jimturley.com
http://www.jimturley.com/

	Everything You Know Is Wrong
	Price
	Power Consumption
	Performance
	Software Support
	Code Density
	Software Compatibility
	Future Roadmap and Growth Path
	Availability
	Intangibles

